1,429 research outputs found

    Anomalous Hall effect in the noncollinear antiferromagnet Mn5Si3

    Get PDF
    Metallic antiferromagnets with noncollinear orientation of magnetic moments provide a playground for investigating spin-dependent transport properties by analysis of the anomalous Hall effect. The intermetallic compound Mn5Si3 is an intinerant antiferromagnet with collinear and noncollinear magnetic structures due to Mn atoms on two inequivalent lattice sites. Here, magnetotransport measurements on polycrystalline thin films and a single crystal are reported. In all samples, an additional contribution to the anomalous Hall effect attributed to the noncollinear arrangment of magnetic moments is observed. Furthermore, an additional magnetic phase between the noncollinear and collinear regimes above a metamagnetic transition is resolved in the single crystal by the anomalous Hall effect.Comment: 7 pages, 4 figure

    Censoring the Editor in Transient Forebrain Ischemia

    Get PDF
    A molecular explanation for why some neurons are more vulnerable than others to ischemic injury has long remained elusive. In this issue of Neuron, Peng et al. propose that CREB-dependent downregulation of the RNA editing enzyme ADAR2, resulting in defective Q/R editing of AMPA receptor GluR2 subunits and increased availability of calcium and zinc-permeable death-promoting AMPA receptors, underlies the vulnerability of some neuronal populations to ischemia

    Mitochondrial regulation of local supply of energy in neurons

    Get PDF
    Brain computation is metabolically expensive and requires the supply of significant amounts of energy. Mitochondria are highly specialized organelles whose main function is to generate cellular energy. Due to their complex morphologies, neurons are especially dependent on a set of tools necessary to regulate mitochondrial function locally in order to match energy provision with local demands. By regulating mitochondrial transport, neurons control the local availability of mitochondrial mass in response to changes in synaptic activity. Neurons also modulate mitochondrial dynamics locally to adjust metabolic efficiency with energetic demand. Additionally, neurons remove inefficient mitochondria through mitophagy. Neurons coordinate these processes through signalling pathways that couple energetic expenditure with energy availability. When these mechanisms fail, neurons can no longer support brain function giving rise to neuropathological states like metabolic syndromes or neurodegeneration

    On-line Learning of Mutually Orthogonal Subspaces for Face Recognition by Image Sets

    No full text
    We address the problem of face recognition by matching image sets. Each set of face images is represented by a subspace (or linear manifold) and recognition is carried out by subspace-to-subspace matching. In this paper, 1) a new discriminative method that maximises orthogonality between subspaces is proposed. The method improves the discrimination power of the subspace angle based face recognition method by maximizing the angles between different classes. 2) We propose a method for on-line updating the discriminative subspaces as a mechanism for continuously improving recognition accuracy. 3) A further enhancement called locally orthogonal subspace method is presented to maximise the orthogonality between competing classes. Experiments using 700 face image sets have shown that the proposed method outperforms relevant prior art and effectively boosts its accuracy by online learning. It is shown that the method for online learning delivers the same solution as the batch computation at far lower computational cost and the locally orthogonal method exhibits improved accuracy. We also demonstrate the merit of the proposed face recognition method on portal scenarios of multiple biometric grand challenge

    Living art and the art of living: remaking home in Italy in the 1960s

    Get PDF
    This thesis focuses on the social, material, and aesthetic engagement with the image of home by artists in Italy in the 1960s to offer new perspectives on this period that have not been accounted for in the literature. It considers the way in which the shift toward environment, installation and process-based practices mapped onto the domestic at a time when Italy had become synonymous with the design of environments. Over four chapters I explore the idea of living-space as the mise-en-scène, and conceptual framework, for a range of artists working across Italy in ways that both anticipate and shift attention away from accounts that foreground the radical architectural experiments enshrined in MoMA’s landmark exhibition Italy: the New Domestic Landscape (1972). I begin by examining the way in which the group of temporary homes made by Carla Accardi between 1965 and 1972 combines the familiar utopian rhetoric of alternative living with attempts to redefine artistic practice at this moment. I then go on to look in turn at the sculptural practice of artists Marisa Merz and Piero Gilardi in relation to the everyday lived experience of home. This question is first considered in relation to the material and psychic challenges Merz poses to the gendering of homemaking with Untitled (Living Sculpture) 1966. I then go on to explore the home, as it might be understood in ecological terms, through an examination of the polyurethane microhabitats made by Gilardi. These themes are finally drawn together by looking at a radically different type of work, Carla Lonzi’s book Autoritratto (1969). By examining the images interspersed throughout Autoritratto I consider how this book plays out the lives of fourteen prominent artists to create the semblance of an everyday shared lived experience

    GABA(A) receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein

    Get PDF
    GABA(A) receptors are critical in controlling neuronal activity. Here, we examined the role for phospholipase C-related inactive protein type 1 (PRIP-1), which binds and inactivates protein phosphatase 1alpha (PP1alpha) in facilitating GABA(A) receptor phospho-dependent regulation using PRIP-1(-/-) mice. In wild-type animals, robust phosphorylation and functional modulation of GABA(A) receptors containing beta3 subunits by cAMP-dependent protein kinase was evident, which was diminished in PRIP-1(-/-) mice. PRIP-1(-/-) mice exhibited enhanced PP1alpha activity compared with controls. Furthermore, PRIP-1 was able to interact directly with GABA(A) receptor beta subunits, and moreover, these proteins were found to be PP1alpha substrates. Finally, phosphorylation of PRIP-1 on threonine 94 facilitated the dissociation of PP1alpha-PRIP-1 complexes, providing a local mechanism for the activation of PP1alpha. Together, these results suggest an essential role for PRIP-1 in controlling GABA(A) receptor activity via regulating subunit phosphorylation and thereby the efficacy of neuronal inhibition mediated by these receptors

    A novel Markov logic rule induction strategy for characterizing sports video footage

    Get PDF
    The grounding of high-level semantic concepts is a key requirement of video annotation systems. Rule induction can thus constitute an invaluable intermediate step in characterizing protocol-governed domains, such as broadcast sports footage. We here set out a novel “clause grammar template” approach to the problem of rule-induction in video footage of court games that employs a second-order meta grammar for Markov Logic Network construction. The aim is to build an adaptive system for sports video annotation capable, in principle, both of learning ab initio and also adaptively transferring learning between distinct rule domains. The method is tested with respect to both a simulated game predicate generator and also real data derived from tennis footage via computer-vision based approaches including HOG3D based player-action classification, Hough-transform based court detection, and graph-theoretic ball-tracking. Experiments demonstrate that the method exhibits both error resilience and learning transfer in the court domain context. Moreover the clause template approach naturally generalizes to any suitably-constrained, protocol-governed video domain characterized by feature noise or detector error

    Domain anomaly detection in machine perception: a system architecture and taxonomy

    Get PDF
    We address the problem of anomaly detection in machine perception. The concept of domain anomaly is introduced as distinct from the conventional notion of anomaly used in the literature. We propose a unified framework for anomaly detection which exposes the multifacetted nature of anomalies and suggest effective mechanisms for identifying and distinguishing each facet as instruments for domain anomaly detection. The framework draws on the Bayesian probabilistic reasoning apparatus which clearly defines concepts such as outlier, noise, distribution drift, novelty detection (object, object primitive), rare events, and unexpected events. Based on these concepts we provide a taxonomy of domain anomaly events. One of the mechanisms helping to pinpoint the nature of anomaly is based on detecting incongruence between contextual and noncontextual sensor(y) data interpretation. The proposed methodology has wide applicability. It underpins in a unified way the anomaly detection applications found in the literature
    corecore